Chapter 8 Hypothesis Testing

8-1 Overview
8-2 Basics of Hypothesis Testing
8-3 Testing a Claim About a Proportion
8-4 Testing a Claim About a Mean: σ Known
8-5 Testing a Claim About a Mean: σ Not Known
8-6 Testing a Claim About a Standard Deviation or Variance

Overview

Definition

\%In statistics, a hypothesis is a claim or statement about a property of a population.
*A hypothesis test (or test of significance) is a standard procedure for testing a claim about a property of a population.

Components of a Formal Hypothesis Test
 Null Hypothesis: H_{0}

 Slide 3*The null hypothesis includes the assumed value of the population parameter.

* It must be a statement of equality.
*Test the Null Hypothesis directly
* Reject \boldsymbol{H}_{0} or fail to reject $\boldsymbol{H}_{\mathbf{0}}$

Copyright © 2004 Pearson Education, Inc

Note about Forming Your Own Claims (Hypotheses)

If you are conducting a study and want to use a hypothesis test to support your claim, the claim must be worded so that it becomes the alternative hypothesis.

Note about Identifying H_{0} and H_{1}

Example: Identify the Null and Altenative Hypothesis.
Refer to Figure $7-2$ and use the given claims to express
the corresponding null and alternative hypotheses in
symbolic form.

1) The proportion of drivers who admit to running red
lights is greater than 0.5 .
In Step 1 of Figure $7-2$, we express the given claim as $p>$
0.5. In Step 2, we see that if $p>0.5$ is false, then $p \leq 0.5$
must be true. In Step 3 , we see that the expression $p>0.5$
does not contain equality, so we let the alternative
hypothesis H_{1} be $p>0.5$, and we let H_{0} be $p=0.5$.
Copyright © 2004 Pearson Education, Inc.

Cpyright © 2004 Pearson Education, Inc.

Slide 9

Example: Identify the Null and Altenative Hypothesis. Refer to Figure 7-2 and use the given claims to express the corresponding null and alternative hypotheses in symbolic form.
2) The mean height of professional basketball players is at least 6 ft .

In Step 1 of Figure 7-2, we express "a mean of at least 6 ft " in symbols $\mu \geq 6$. In Step 2, we see that if $\mu \geq 6$ is false, then $\mu<6$ must be true. In Step 3, we see that the expression $\mu<6$ does not contain equality, so we let the alternative hypothesis H_{1} be $\mu<6$, and we let H_{0} be $\mu \geq 6$.

Example: Identify the Null and Altenative Hypothesis. Refer to Figure 7-2 and use the given claims to express the corresponding null and alternative hypotheses in symbolic form.
3) The standard deviation of IQ scores of actors is equal to 15.

In Step 1 of Figure 7-2, we express the given claim as $\sigma=$ 15. In Step 2, we see that if $\sigma=15$ is false, then $\sigma \neq 15$ must be true. In Step 3, we let the alternative hypothesis H_{1} be σ $\neq 15$, and we let H_{0} be $\sigma=15$.

Right-tailed Test

Test Statistic

The test statistic is a value computed from the sample data, and it is used in making the decision about the rejection of the null hypothesis.

Test statistic for proportion

$$
z=\frac{\hat{p}-p}{\sqrt{\frac{p q}{n}}}
$$

Copyright © 2004 Pearson Education, Inc

Test Statistic

The test statistic is a value computed from the sample data, and it is used in making the decision about the rejection of the null hypothesis.

Test statistic for mean

When σ is
unknown

Test Statistic

The test statistic is a value computed from the sample data, and it is used in making the decision about the rejection of the null hypothesis.

Test statistic for mean
$z=\frac{\bar{x}-\mu}{\frac{\sigma}{\sqrt{n}}} \quad \begin{aligned} & \text { When } \sigma \\ & \text { is known }\end{aligned}$

Copyright © 2004 Pearson Education, Inc.

Test Statistic

The test statistic is a value computed from the sample data, and it is used in making the decision about the rejection of the null hypothesis.

Test statistic for standard deviation

$$
\chi^{2}=\frac{(n-1) s^{2}}{\sigma^{2}}
$$

Critical Region

The critical region (or rejection region) is the set of all values of the test statistic that cause us to reject the null hypothesis. For example, see the red-shaded region in Figure 7-3.

Significance Level

 Slide 18The significance level (denoted by α) is the probability that the test statistic will fall in the critical region when the null hypothesis is actually true. This is the same α introduced in Section 6-2. Common choices for α are $0.05,0.01$, and 0.10 .

Critical Value

A critical value is any value that separates the critical region (where we reject the null hypothesis) from the non-critical region which is determined by the value of the significance level α.

Decision Criterion

Traditional method:
Reject \boldsymbol{H}_{0} if the test statistic falls within the critical region.

Fail to reject H_{0} if the test statistic does not fall within the critical region.

Decision Criterion
Traditional method:
Reject H_{0} if the test statistic falls
within the critical region.
Fail to reject H_{0} if the test statistic
does not fall within the critical region.

The P-value (or p-value or probability value) is the probability of getting a value of the test statistic that is at least as extreme as the one representing the sample data, assuming that the null hypothesis is true.

Conclusions

 in Hypothesis TestingWe always test the null hypothesis.

1. Reject the \boldsymbol{H}_{0}
2. Fail to reject the \boldsymbol{H}_{0}

Copyright © 2004 Pearson Education, Inc.

Decision Criterion

Slide 24
P-value method:
Reject H_{0} if P-value $\leq \alpha$.
Fail to reject H_{0} if P-value $>\boldsymbol{\alpha}$.

Decision Criterion

Another option:

Instead of using a significance level such as 0.05 , simply identify the P-value and leave the decision to the reader.

Copyright © 2004 Pearson Education, Inc.

Accept versus

Fail to Reject

*Some texts use "accept the null hypothesis."
*We are not proving the null hypothesis.
*The sample evidence is not strong enough to warrant rejection (such as not enough evidence to convict a suspect).

Figure 7-7
Copyright © 2004 Pearson Education, Inc.

Type I \& II Error

*A Type I error is the mistake of rejecting the null hypothesis when it is true.
*The symbol α (alpha) is used to represent the probability of a type I error.
*A Type II error is the mistake of failing to reject the null hypothesis when it is false.
*The symbol β (beta) is used to represent the probability of a type II error.

Copyright © 2004 Pearson Education, Inc.

Controlling

Type I and Type II Errors
*For any fixed α, an increase in the sample size n will cause a decrease in β.
*For any fixed sample size n, a decrease in α will cause an increase in β. Conversely, an increase in α will cause a decrease in β.
$\%$ To decrease both α and β, increase the sample size.

Assumptions for Testing Claims About a Population Proportion p

1) The sample observations are a simple random sample.
2) The conditions for a binomial experiment are satisfied (Section 4-3)
3) The condition $n p \geq 5$ and $n q \geq 5$ are satisfied, so the binomial distribution of sample proportions can be approximated by a normal distribution with

$$
\mu=n p \quad \text { and } \quad \sigma=\sqrt{n p q}
$$

Assumptions for Testing Claims About a Population Proportion p

1) The sample observations are a simple random sample.
2) The conditions for a binomial experiment are satisfied (Section 4-3)

Copyright © 2004 Pearson Education, Inc.

\hat{p} sometimes is given directly " 10% of the observed sports cars are red" is expressed as

$$
\hat{p}=0.10
$$

\hat{p} sometimes must be calculated " 96 surveyed households have cable TV and 54 do not" is calculated using

$$
\hat{p}=\frac{x}{n}=\frac{96}{(96+54)}=0.64
$$

(determining the sample proportion of households with cable TV)

Slide 36

Example: In the Chapter Problem, we noted that an article distributed by the Associated Press included these results from a nationwide survey: Of 880 randomly selected drivers, 56% admitted that they run red lights. The claim is that the majority of all Americans run red lights. That is, $\boldsymbol{p} \boldsymbol{>} \mathbf{0 . 5}$.

The sample data are $\boldsymbol{n}=880$, and $\hat{\mathbf{p}}=0.56$.

$$
\begin{gathered}
n p=(880)(0.5)=440 \geq 5 \\
n q=(880)(0.5)=440 \geq 5 \\
\text { and } \\
x=n \hat{p}=880(.56)=492.8 \approx 493
\end{gathered}
$$

Example: In the Chapter Problem, we noted that an article distributed by the Associated Press included these results from a nationwide survey: Of 880 randomly selected drivers, 56% admitted that they run red lights. The claim is that the majority of all Americans run red lights. That is, $p>0.5$. The sample data are $n=880$, and $\hat{p}=0.56$. We will use the Traditional Method.
$H_{0}: p=0.5$
$\begin{aligned} & H_{1}: p>0.5 \\ & \alpha=0.05\end{aligned}$
$=\frac{\hat{p}-p}{\sqrt{\frac{p q}{n}}}=\frac{0.56-0.5}{\sqrt{\frac{(0.5)(0.5)}{880}}}=3.56$
This is a right-tailed test, so the critical region is an area of 0.05 . We find that $z=1.645$ is the critical value of the critical region. We reject the null hypothesis.
There is sufficient evidence to support the claim.

Example: In the Chapter Problem, we noted that an article distributed by the Associated Press included these results from a nationwide survey: Of 880 randomly selected drivers, 56% admitted that they run red lights. The claim is that the majority of all Americans run red lights. That is, $p>0.5$. The sample data are $n=880$, and $\hat{p}=0.56$. We will use the P-value Method.
$H_{0}: p=0.5 \quad z=\frac{\hat{p}-p}{\begin{array}{l}H_{1}: p>0.5 \\ \alpha=0.05\end{array}}=\frac{0.56-0.5}{\sqrt{\frac{p q}{n}}}=3.56$
$\sqrt{\frac{(0.5)(0.5)}{880}}$
Since the P-value of 0.0001 is less than the significance level of $\alpha=0.05$, we reject the null hypothesis. There is sufficient evidence to support the claim.

Example: In the Chapter Problem, we noted that an article distributed by the Associated Press included these results from a nationwide survey: Of 880 randomly selected drivers, 56% admitted that they run red lights. The claim is that the majority of all Americans run red lights. That is, $p>0.5$. The sample data are $n=880$, and $\hat{p}=0.56$. We will use the P-value Method.

Referring to Table A-2, we see that for values of $z=3.50$ and higher, we use 0.9999 for the cumulative area to the left of the test statistic. The P -value is $1-0.9999=$ 0.0001 .

Copyright © 2004 Pearson Education, Inc.

CAUTION

> *When the calculation of \hat{p} results in a decimal with many places, store the number on your calculator and use all the decimals when evaluating the z test statistic.

* Large errors can result from rounding \hat{p} too much.

Example: When Gregory Mendel conducted slide 45 his famous hybridization experiments with peas, one such experiment resulted in offspring consisting of 428 peas with green pods and 152 peas with yellow pods. According to Mendel's theory, $1 / 4$ of the offspring peas should have yellow pods. Use a 0.05 significance level with the P-value method to test the claim that the proportion of peas with yellow pods is equal to $1 / 4$.
$H_{0}: p=0.25$
$H_{1}: p \neq 0.25$
$n=580$
$\alpha=0.05$
$\hat{p}=0.262$

$-=\frac{0.262-0.25}{\sqrt{\frac{(0.25)(0.75)}{580}}}=0.67$
Since this is a two-tailed test, the P-value is twice the area to the right of the test statistic. Using Table A-2, $z=0.67$ is $1-0.7486=0.2514$.

Compare these results with earlier answers.

Test Statistic for Testing a Claim about a Proportion

$$
\begin{gathered}
Z=\frac{\hat{p}-p}{\sqrt{\frac{p q}{n}}} \\
Z=\frac{x-\mu}{\sigma}=\frac{x-n p}{\sqrt{n p q}}=\frac{\frac{x}{n}-\frac{n p}{n}}{\frac{\sqrt{n p q}}{n}}=\frac{\hat{p}-p}{\sqrt{\frac{p q}{n}}}
\end{gathered}
$$

Assumptions for Testing Claims About Population Means

1) The sample is a simple random sample.

2) The value of the population standard deviation σ is known.

3) Either or both of these conditions is satisfied: The population is normally distributed or $n>30$.

 sample of 106 body temperatures having a mean of $98.20^{\circ} \mathrm{F}$. Assume that the sample is a simple random sample and that the population standard deviation σ is known to be $0.62^{\circ} \mathrm{F}$. Use a 0.05 significance level to test the common belief that the mean body temperature of healthy adults is equal to $98.6^{\circ} \mathrm{F}$. Use the P-value method.```
H0: }\mu=98.
H1:\mu\not=98.6
\alpha=0.05
\overline{x}}=98.
\sigma=0.62
```



Example: Data Set 4 in Appendix B lists a slide 50 sample of 106 body temperatures having a mean of $98.20^{\circ} \mathrm{F}$. Assume that the sample is a simple random sample and that the population standard deviation $\sigma$ is known to be $0.62^{\circ} \mathrm{F}$. Use a 0.05 significance level to test the common belief that the mean body temperature of healthy adults is equal to $98.6^{\circ} \mathrm{F}$. Use the $P$-value method.
$H_{0}: \mu=98.6$
$H_{1}: \mu \neq 98.6$
$\alpha=0.05$
$\bar{x}=98.2$
$\sigma=0.62$
$z=\frac{\bar{x}-\mu_{\bar{x}}}{\frac{\sigma}{\sqrt{n}}}=\frac{98.2-98.6}{\frac{0.62}{\sqrt{106}}}=-6.64$

This is a two-tailed test and the test statistic is to the left of the center, so the $P$-value is twice the area to the left of $z=-6.64$. We refer to Table A-2 to find the area to the left of $z=-6.64$ is 0.0001 , so the $P$-value is $2(0.0001)=0.0002$.

Copyright © 2004 Pearson Education, Inc

Example: Data Set 4 in Appendix B lists a Slide 52 sample of 106 body temperatures having a mean of $98.20^{\circ} \mathrm{F}$. Assume that the sample is a simple random sample and that the population standard deviation $\sigma$ is known to be $0.62^{\circ} \mathrm{F}$. Use a 0.05 significance level to test the common belief that the mean body temperature of healthy adults is equal to $98.6^{\circ} \mathrm{F}$. Use the $P$-value method.

| $H_{0}: \mu=98.6$ | $\mathrm{z}=-6.64$ |
| :--- | :--- |
| $H_{1}: \mu \neq 98.6$ |  |
| $\alpha=0.05$ |  |
| $\bar{x}=98.2$ |  |
| $\sigma=0.62$ |  |

Because the $P$-value of 0.0002 is less than the significance level of $\alpha=0.05$, we reject the null hypothesis.
There is sufficient evidence to conclude that the mean body temperature of healthy adults differs from $98.6^{\circ} \mathrm{F}$.


Compare these results with earlier answers.

Example: Data Set 4 in Appendix B lists a slide 53 sample of 106 body temperatures having a mean of $98.20^{\circ} \mathrm{F}$. Assume that the sample is a simple random sample and that the population standard deviation $\sigma$ is known to be $0.62^{\circ} \mathrm{F}$. Use a 0.05 significance level to test the common belief that the mean body temperature of healthy adults is equal to $98.6^{\circ} \mathrm{F}$. Use the Traditional method.
$H_{0}: \mu=98.6$
$H_{1}: \mu \neq 98.6$ temperature of healthy adults differs from $98.6^{\circ} \mathrm{F}$.

$$
z=-6.64
$$

.
$\alpha=0.05 \quad$ We now find the critical values to be $z=-1.96$
$\bar{x}=98.2 \quad$ and $z=1.96$. We would reject the null
$\sigma=0.62$ hypothesis, since the test statistic of $z=-6.64$ would fall in the critical region.

There is sufficient evidence to conclude that the mean body 1.96 64
 dy Copyright © 2004 Pearson Education, Inc.

## Assumptions for Testing Claims About a Population Mean (with $\sigma$ Not Known)

1) The sample is a simple random sample.
2) The value of the population standard deviation $\sigma$ is not known.
3) Either or both of these conditions is satisfied: The population is normally distributed or $n>30$.

## Choosing between the Normal and Student $t$ Distributions when Testing a Claim about a Population Mean $\mu$ <br> Use the Student $t$ distribution when $\sigma$ is not known and either or both of these conditions is satisfied: <br> Population is normally distributed

## OR

$$
n>30 .
$$

Copyright © 2004 Pearson Education, Inc
Copyright © 2004 Pearson Education, Inc.

Example: A premed student in a statistics class is required to do a class project. She plans to collect her own sample data to test the claim that the mean body temperature is less than $98.6^{\circ} \mathrm{F}$. After carefully planning a procedure for obtaining a simple random sample of 12 healthy adults, she measures their body temperatures and obtains the results on page 409 . Use a 0.05 significance level to test the claim these body temperatures come from a population with a mean that is less than $98.6^{\circ} \mathrm{F}$. Use the Traditional method.

$$
\begin{aligned}
& \begin{array}{l}
H_{0}: \mu=98.6 \\
H_{1}: \mu<98.6 \\
\alpha=0.05 \\
\bar{x}=98.39 \\
s=0.535 \\
n=12
\end{array} \quad t=\frac{\bar{x}-\mu_{\bar{x}}}{\frac{S}{\sqrt{n}}}=\frac{98.39 .}{\frac{0 .}{\sqrt{r}}} \\
& \\
&
\end{aligned}
$$

## Example: A premed student in a statistics

 class is required to do a class project. She plans to collect her own sample data to test the claim that the mean body temperature is less than $98.6^{\circ} \mathrm{F}$. After carefully planning a procedure for obtaining a simple random sample of 12 healthy adults, she measures their body temperatures and obtains the results on page 409 . Use a 0.05 significance level to test the claim these body temperatures come from a population with a mean that is less than $98.6^{\circ} \mathrm{F}$. Use the Traditional method.There are no outliers, and based on a histogram and normal quantile plot, we can assume that the data are from a population with a normal distribution.
We use the sample data to find $n=12, \bar{x}=98.39$, and $s=$ 0.535 .


## Example: A premed student in a statistics

 class is required to do a class project. She plans to collect her own sample data to test the claim that the mean body temperature is less than $98.6^{\circ} \mathrm{F}$. After carefully planning a procedure for obtaining a simple random sample of 12 healthy adults, she measures their body temperatures and obtains the results on page 409 . Use a 0.05 significance level to test the claim these body temperatures come from a population with a mean that is less than $98.6^{\circ} \mathrm{F}$. Use the Traditional method.$H_{0}: \mu=98.6$
$H_{1}: \mu<98.6$
$\alpha=0.05$
$\bar{x}=98.39$
$s=0.535$
$n=12$

$$
t=-1.360
$$

Because the test statistic of $t=-1.360$ does not fall in the critical region, we fail to reject $H_{0}$.
There is not sufficient evidence to to support the claim that the sample comes from a population with a mean less than $98.6^{\circ} \mathrm{F}$.

## Example:

Slide 61
12 students quiz scores are given below:
$25,20,18,20,19,17,24,23,20,21,19,22$
Assume scores are normally distributed, test the claim that the mean quiz score of all student is less than 20 , use $\alpha=0.01$.

Enter data into $L_{1}$, then since $\sigma$ is unknown, we use T-test.

## Assumptions for Testing

 Claims About $\sigma$ or $\sigma^{2}$1. The sample is a simple random sample.
2) The population has values that are normally distributed (a strict requirement).

## $P$-values and Critical

Values for Chi-Square Distribution

Use Table A-4.
$\%$ The degrees of freedom $=\boldsymbol{n} \mathbf{- 1}$.

Using TI Calculator:
Slide 62


Properties of Chi-Square Distribution

* All values of $\chi^{2}$ are nonnegative, and the distribution is not symmetric (see Figure 7-12).
*There is a different distribution for each number of degrees of freedom (see Figure 7-13).
*The critical values are found in Table A-4 using $n-1$ degrees of freedom.


Example: For a simple random sample of adults, iQ scores are
normally distributed with a mean of 100 and a standard deviation of 15 . A simple random sample of 13 statistics professors yields a standard deviation of $\boldsymbol{s}=7.2$. Assume that IQ scores of statistics professors are normally distributed and use a 0.05 significance level to test the claim that $\sigma=15$.
$H_{0}: \sigma=15$
$H_{1}: \sigma \neq 15$
$\alpha=0.05$
$n=13$
$n=13$
$s=7.2$
$\chi^{2}=\frac{(n-1) s^{2}}{\sigma^{2}}=\frac{(13-1)(7.2)^{2}}{15^{2}}=2.765$

Copyright © 2004 Pearson Education, Inc.

Example: For a simple random sample of adults, IQ scores are normally distributed with a mean of 100 and a standard deviation of 15. A simple random sample of 13 statistics professors yields a standard deviation of $s=7.2$. Assume that IQ scores of statistics professors are normally distributed and use a 0.05 significance level to test the claim that $\sigma=15$.
$H_{0}: \sigma=15$
$H_{1}: \sigma \neq 15 \quad \chi^{2}=2.765$
$\alpha=0.05$
$n=13$
$s=7.2 \quad$ found in Table A-4, in the 12th row (degrees
The critical values of 4.404 and 23.337 are of freedom $=n-1$ ) in the column corresponding to 0.975 and 0.025 .

Example: For a simple random sample of adults, IQ scores are normally distributed with a mean of 100 and a standard deviation of 15. A simple random sample of 13 statistics professors yields a standard deviation of $s=7.2$. Assume that IQ scores of statistics professors are normally distributed and use a 0.05 significance level to test the claim that $\sigma=15$.
$H_{0}: \sigma=15 \quad \chi^{2}=2.765$
$H_{1}: \sigma \neq 15$
$\alpha=0.05$
$\alpha=0.0$
$n=13$
$s=7.2$
Because the test statistic is in the critical region, we reject the null hypothesis. There is sufficient evidence to warrant rejection of the claim that the standard deviation is equal to 15.

